Uniqueness to Some Inverse Source Problems for the Wave Equation in Unbounded Domains

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse wave scattering by unbounded obstacles: Uniqueness for the two-dimensional Helmholtz equation

In this paper we present some uniqueness results on inverse wave scattering by unbounded obstacles for the two-dimensional Helmholtz equation. We prove that an impenetrable one-dimensional rough surface can be uniquely determined by the values of the scattered field taken on a line segment above the surface that correspond to the incident waves generated by a countable number of point sources. ...

متن کامل

Instability results for the damped wave equation in unbounded domains

We extend some previous results for the damped wave equation in bounded domains in R to the unbounded case. In particular, we show that if the damping term is of the form αa with bounded a taking on negative values on a set of positive measure, then there will always exist unbounded solutions for sufficiently large positive α. In order to prove these results, we generalize some existing results...

متن کامل

Rapid Solution of the Wave Equation in Unbounded Domains

In this paper we propose and analyze a new, fast method for the numerical solution of time domain boundary integral formulations of the wave equation. We employ Lubich’s convolution quadrature method for the time discretization and a Galerkin boundary element method for the spatial discretization. The coefficient matrix of the arising system of linear equations is a triangular block Toeplitz ma...

متن کامل

Uniqueness Theorems for Inverse Obstacle Scattering Problems in Lipschitz Domains

For the Neumann and Robin boundary conditions the uniqueness theorems for inverse obstacle scattering problems are proved in Lipschitz domains. The role of non-smoothness of the boundary is analyzed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematicae Applicatae Sinica, English Series

سال: 2019

ISSN: 0168-9673,1618-3932

DOI: 10.1007/s10255-020-0917-4